

CHEMISTRY

Paper 2 Multiple Choice (Extended)

0620/23 October/November 2017

45 minutes

Additional Materials: Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

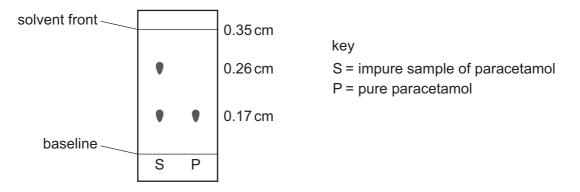
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 15 printed pages and 1 blank page.



- 1 Which statement describes sublimation?
 - **A** Particles moving slowly past each other speed up and move further apart.
 - **B** Particles vibrating next to each other become mobile and move slowly past each other.
 - **C** Particles vibrating next to each other start to move rapidly and move further apart.
 - **D** Rapidly moving particles slow down and move closer together.
- **2** 25 cm^3 of an alkali are added to 20 cm^3 of an acid. The temperature change is measured.

Which apparatus is not needed in the experiment?

- **A** 25 cm³ measuring cylinder
- **B** 100 cm³ beaker
- **C** balance
- D thermometer
- **3** The painkiller paracetamol is synthesised from 4-aminophenol.

Chromatography was carried out on an impure sample of paracetamol. The results are shown (not drawn to scale).

The sample of paracetamol was contaminated with 4-aminophenol only.

What is the R_f value of 4-aminophenol?

Α	0.49	В	0.65	С	0.74	D	1.35

4 Which compound is silicon(IV) oxide?

	melting point /°C	good electrical conductor when solid	good electrical conductor when molten
Α	-73	no	no
в	801	no	yes
С	1495	yes	yes
D	1710	no	no

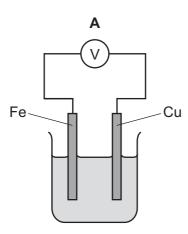
5 Carbon has three naturally occurring isotopes, ¹²C, ¹³C and ¹⁴C.

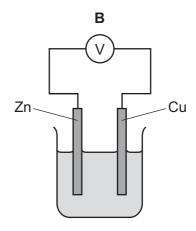
Which statement explains why the isotopes have the same chemical properties?

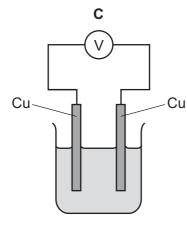
- A They have the same number of electrons in the first shell.
- **B** They have the same number of electrons in the outer shell.
- **C** They have the same number of neutrons in the nucleus.
- **D** They have the same number of protons as neutrons.
- **6** Which dot-and-cross diagram shows the outer shell electron arrangement in a molecule of carbon dioxide?

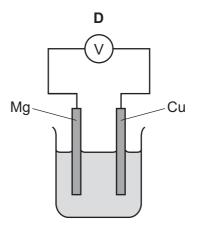
7 The equation represents the reaction between solid magnesium oxide and dilute hydrochloric acid to form magnesium chloride and water.

 $MgO ~+~ 2HC{\it l} \rightarrow ~MgC{\it l}_2 ~+~ H_2O$


Which row shows the state symbols for hydrochloric acid, magnesium chloride and water?


	HCl	MgCl ₂	H ₂ O
Α	(aq)	(aq)	(I)
в	(aq)	(I)	(I)
С	(I)	(aq)	(aq)
D	(I)	(I)	(aq)


8 A compound contains 34.5% calcium, 24.1% silicon and 41.4% oxygen by mass.What is its empirical formula?

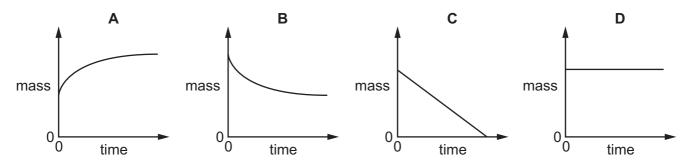

9 Which statements about the electrolysis of concentrated copper(II) chloride are correct?

- 1 Electrons are transferred from the cathode to the copper(II) ions.
- 2 Electrons move round the external circuit from the cathode to the anode.
- 3 Chloride ions are attracted to the anode.
- 4 Hydroxide ions transfer electrons to the cathode.
- **A** 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4
- 10 Which metal combination produces the highest voltage reading in the cells shown?

https://xtremepape.rs/

11 Some bond energies are shown in the table.

bond	bond energy in kJ/mol
H–H	+436
O=O	+496
H–O	+460


Hydrogen reacts with oxygen. The reaction is exothermic.

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

What is the energy change for the reaction?

- A –3208 kJ/mol
- **B** –908 kJ/mol
- **C** _472 kJ/mol
- **D** -448 kJ/mol
- 12 Which statement describes an exothermic reaction?
 - **A** The energy absorbed for bond breaking is greater than the energy released by bond formation.
 - **B** The energy absorbed for bond breaking is less than the energy released by bond formation.
 - **C** The energy released by bond breaking is greater than the energy absorbed for bond formation.
 - **D** The energy released by bond breaking is less than the energy absorbed for bond formation.
- **13** The mass of a beaker and its contents is plotted against time.

Which graph represents what happens when sodium carbonate reacts with an excess of dilute hydrochloric acid in an open beaker?

14 Silver chloride reacts when it is exposed to light.

Which row shows what happens to the silver in this process?

	half-equation	type of reaction	
Α	Ag \rightarrow Ag ⁺ + e ⁻	oxidation	
В	Ag \rightarrow Ag ⁺ + e ⁻	reduction	
С	$\operatorname{Ag}^{\scriptscriptstyle +}$ + $\operatorname{e}^{\scriptscriptstyle -}$ $ ightarrow$ Ag	oxidation	
D	$\operatorname{Ag}^{\scriptscriptstyle +}$ + $\operatorname{e}^{\scriptscriptstyle -}$ $ ightarrow$ Ag	reduction	

- **15** Which statement about the effect of concentration and temperature on the rate of a reaction is **not** correct?
 - **A** If the concentration of a reactant is increased, the rate of reaction increases because more particles have sufficient energy to react.
 - **B** If the concentration of a reactant is increased, the rate of reaction increases because there are more collisions between particles per second.
 - **C** If the temperature is increased, the rate of reaction increases because there are more collisions between particles per second.
 - **D** If the temperature is increased, the rate of reaction increases because more particles have sufficient energy to react.
- **16** The following reaction has reached equilibrium in a closed system.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The forward reaction is exothermic.

Which row shows the effect of increasing the pressure on the equilibrium mixture?

	reaction rate	amount of SO ₂	amount of SO ₃
Α	increases	decreases	increases
в	increases	increases	decreases
С	unchanged	decreases	increases
D	unchanged	increases	decreases

17 Some properties of four oxides are listed.

Oxide 1 reacts with both acids and alkalis to form salts.

Oxide 2 reacts with acids to form salts but does not react with alkalis.

Oxide 3 reacts with alkalis to form salts but does not react with acids.

Oxide 4 does not react with acids or alkalis.

Which row describes the oxides?

	oxide 1	oxide 2	oxide 3	oxide 4
Α	amphoteric	acidic	basic	neutral
в	amphoteric	basic	acidic	neutral
С	neutral	acidic	basic	amphoteric
D	neutral	basic	acidic	amphoteric

- **18** What is **not** a typical characteristic of acids?
 - A They react with alkalis producing water.
 - **B** They react with **all** metals producing hydrogen.
 - **C** They react with carbonates producing carbon dioxide.
 - **D** They turn blue litmus paper red.
- **19** Three solids, P, Q and R, all react with dilute sulfuric acid to produce zinc sulfate.

P and R produce gases during the reaction.

The gas produced when P reacts will not burn. The gas produced when R reacts will burn.

What are P, Q and R?

	Р	Q	R
Α	zinc	zinc hydroxide	zinc carbonate
в	zinc carbonate	zinc	zinc oxide
С	zinc carbonate	zinc hydroxide	zinc
D	zinc oxide	zinc carbonate	zinc

20 Which ion forms a green precipitate with aqueous sodium hydroxide that dissolves in an excess of aqueous sodium hydroxide?

 $\label{eq:alpha} \textbf{A} \quad \textbf{Ca}^{2+} \qquad \textbf{B} \quad \textbf{Cr}^{3+} \qquad \textbf{C} \quad \textbf{Cu}^{2+} \qquad \textbf{D} \quad \textbf{Fe}^{2+}$

21 A period of the Periodic Table is shown.

group	I	Ι	=	IV	V	VI	VII	VIII
element	R	S	Т	V	W	Х	Y	Z

The letters are not their chemical symbols.

Which statement is correct?

- A Element R does not conduct electricity.
- **B** Elements R and Y react together to form an ionic compound.
- **C** Element Z exists as a diatomic molecule.
- **D** Element Z reacts with element T.
- 22 Some properties of element X are shown.

melting point in °C	98
boiling point in °C	883
reaction with cold water	gives off H_2 gas
reaction when heated with oxygen	burns to give a white solid

In which part of the Periodic Table is X found?

- A Group I
- B Group VII
- C Group VIII
- **D** transition elements

23 The table gives some properties of an element.

melting point in °C	3422
appearance of the element	grey
appearance of the chloride of the element	dark blue
density in g/cm ³	19.2
electrical conductivity when solid	good

Which other property would you expect this element to have?

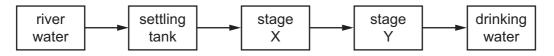
- A acts as a catalyst
- B brittle
- **C** forms an acidic oxide
- D highly reactive with water
- 24 Why is argon gas used to fill electric lamps?
 - A It conducts electricity.
 - B It glows when heated.
 - C It is less dense than air.
 - **D** It is not reactive.
- 25 What is a property of all metals?
 - A conduct electricity
 - B hard
 - **C** low melting points
 - D react with water
- 26 Aluminium is obtained by the electrolysis of a mixture of aluminium oxide and cryolite.

Why is cryolite used?

- **A** as a catalyst to speed up the process
- **B** as a coolant to prevent the process getting too hot
- **C** as a solvent for aluminium oxide
- **D** as the main source of aluminium ions

27 Metal M is mixed with copper to produce brass.

What is M?


- **A** chromium
- B nickel
- C vanadium
- D zinc
- 28 Some metal nitrates and carbonates decompose when heated strongly.

Metal Q has a nitrate that decomposes to give a salt and a colourless gas only.

The carbonate of metal Q does not decompose when heated with a Bunsen burner.

What is metal Q?

- A calcium
- B copper
- C sodium
- D zinc
- **29** The flow chart shows stages in the treatment of river water to produce drinking water.

What occurs at stages X and Y?

	Х	Y	
Α	distillation	chlorination	
в	distillation	filtration	
С	filtration	chlorination	
D	filtration	distillation	

30 A piece of zinc is attached to the hull of a steel boat. Steel is an alloy of iron.

Which statement explains why the zinc prevents the iron from rusting?

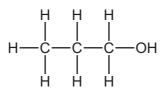
- A Zinc is less reactive than iron, and iron is less likely to lose electrons than zinc.
- **B** Zinc is less reactive than iron, and iron is more likely to lose electrons than zinc.
- **C** Zinc is more reactive than iron, and iron is less likely to lose electrons than zinc.
- **D** Zinc is more reactive than iron, and iron is more likely to lose electrons than zinc.
- **31** The Haber process for making ammonia is carried out at a temperature of 450 °C and a pressure of 200 atmospheres in the presence of a catalyst.

Which statement is **not** correct?

- A Lowering the pressure increases the rate at which ammonia is produced.
- **B** Lowering the temperature slows down the rate at which ammonia is produced.
- **C** Maintaining a very high pressure is very difficult and needs expensive equipment.
- **D** The reaction is a reversible reaction which can proceed forwards and backwards.
- 32 Which process does not produce carbon dioxide?
 - **A** combustion of methane
 - **B** photosynthesis
 - **C** respiration
 - D thermal decomposition of calcium carbonate
- 33 Which row shows the conditions used in the manufacture of sulfuric acid by the Contact process?

	temperature /°C	pressure / atm	catalyst
Α	40	200	Fe
в	40	200	V_2O_5
С	400	2	Fe
D	400	2	V_2O_5

34 Some marble chips (calcium carbonate) are heated strongly and substances X and Y are formed.


12

Substance X is a white solid that reacts with water, giving out heat. Substance Y is a colourless gas.

What are substances X and Y?

	Х	Y
Α	calcium chloride	oxygen
В	calcium hydroxide	carbon dioxide
С	calcium oxide	carbon dioxide
D	calcium sulfate	oxygen

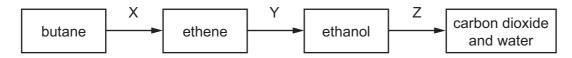
35 The structure of compound R is shown.

What is R?

- A propane
- B propanoic acid
- **C** propanol
- D propene
- **36** Fuel oil and naphtha are two fractions obtained from petroleum.

What are the major uses of these fractions?

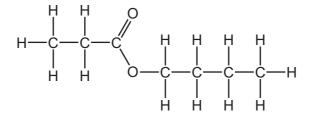
	fuel oil	naphtha
Α	jet fuel	making chemicals
в	jet fuel	making roads
С	ship fuel	making chemicals
D	ship fuel	making roads


37 X, Y and Z are three hydrocarbons.

$$X CH_2=CH_2 Y CH_3-CH=CH_2 Z CH_3-CH_2-CH=CH_2$$

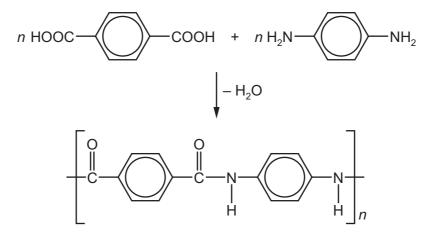
13

What do compounds X, Y and Z have in common?


- 1 They are all alkenes.
- 2 They are all part of the same homologous series.
- 3 They all have the same boiling point.
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- **38** The diagram shows a reaction sequence.

Which row names the processes X, Y and Z?

	Х	Y	Z
Α	cracking	fermentation	respiration
В	cracking	hydration	combustion
С	distillation	fermentation	respiration
D	distillation	hydration	combustion


39 The structure of an ester is shown.

Which combination of carboxylic acid and alcohol produces this ester?

	carboxylic acid	alcohol
Α	butanoic acid	ethanol
в	butanoic acid	propanol
С	ethanoic acid	butanol
D	propanoic acid	butanol

40 The equation shows the formation of a polymer called *Kevlar*.

Which row describes Kevlar?

	how the polymer is formed	type of polymer
Α	addition polymerisation	polyamide
в	addition polymerisation	polyester
С	condensation polymerisation	polyamide
D	condensation polymerisation	polyester

BLANK PAGE

15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017

The Periodic Table of Elements

	VIII	2	He	nelium 4	10	Ne	neon 20	18	Ar	argon 40	36	, К	rypton 84	54	Xe	xenon 131	86	Rn	radon -			
				-							-		-			iodine x 127						
	>									-	-											E
	N				8	0	oxygen 16	16	თ	sulfur 32	34	Se	selenium 79	52	Te	tellurium 128	84	Po	polonium –	116	۲	livermoriun –
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	B	bismuth 209			
	N				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Γl	flerovium -
	≡				5	ш	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	Cn	copernicium -
											29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
dh											28	ïZ	nickel 59	46	Ъd	palladium 106	78	ħ	platinum 195	110	Ds	darmstadtium _
Group											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -
		٢	Т	hydrogen 1							26	Fе	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium -
					1						25	Мn	manganese 55	43	Ц	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
						loc	ISS				24	ŗ	chromium 52	42	Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Db	dubnium –
					.0	ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	Rf	rutherfordium -
								-			21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	പ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_				з	:	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ЪГ	francium -

16

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
lanthanoids	La	Ce	P	Nd	Pm	Sm	Еu	рд	Tb	Dy	Ч	ц	Tm	Υb	Lu
	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium –	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
	89	06	91	92	93	94	95	96	97	98	66	100	101	102	103
actinoids	Ac	Th	Ра		Np	Pu	Am	Cm	离	Ç	Еs	Е'n	Md	No	Ļ
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	califomium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	I	232	231	238	I	I	I	I	I	I	I	I	I	I	I

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

© UCLES 2017

0620/23/O/N/17